Multi-strategy trading utilizing market regimes

Hynek Mlnaiik Subramanian Ramamoorthy
Warwick Institute for Financial Computing School of Informatics
and Department of Computer Science University of Edinburgh
University of Warwick United Kingdom
United Kingdom S.Ramamoorthy@ed.ac.uk

H.Mlnarik@warwick.ac.uk

Rahul Savani
Warwick Institute for Financial Computing
and Department of Computer Science
University of Warwick
United Kingdom

R.S.J.Savani@warwick.ac.uk

1 Introduction

This paper considers the problem of dynamically allocating capital to a portfolio of trading strate-
gies. The allocation should be robust, and the capital allocated to a trading strategy should reflect
the confidence in the expected profit that the strategy will make in current market conditions.

Good trading strategies exploit recurring market dynamics that can be more prevalent in some time
periods than in others. Indeed, the concept of regimes is fundamental to financial markets, and much
research has focused on the detection of regime shifts. In this paper, we consider a regime as defined
by a set of trading strategies that exhibit similar performance in a given time period.

We consider different parameterizations of the same strategy as distinct in our ground set of strate-
gies. The trading problem is to pick a distribution over the ground set that will achieve good per-
formance in the current time period. That we typically choose a distribution of support greater than
one reflects uncertainty on many levels, and allows diversification of risk and return drivers.

We provide a simple algorithm that empirically picks distributions that often approximate the per-
formance of an oracle that picks the best trading strategy in each period from the ground set. To
this end, we explicitly define regimes as subsets of strategies. An initial phase is to rule out a large
number of regimes as irrelevant to counter the combinatorial explosion of dealing with subsets.

In the training phase of our algorithm, we pick random time windows and learn two functions: the
first, classifyMarket, is for (probabilistic) regime classification and takes as input the market data
and produces a distribution over regimes; the second, stFuncDist, produces for each regime a dis-
tribution over strategies, where strategies believed to be good in that regime are assigned higher
probability. The main tools we use are Monte Carlo permutation tests and incremental re-weighting
of probabilities. In the trading phase we use a standard “walk-forward” approach. In the in-sample
period we use the trading results for regime classification, and in the out-of-sample period we allo-
cate capital according to the combination classifyMarket determined from the in-sample period and
the current stFuncDist. This is a simple algorithm, but an empirically successful one - an indication
of which we report. The approach bears some similarity to Sequential Monte Carlo methods [3] in
that it sequentially re-weights hypotheses (in our case, regarding suitability of strategies).

In the final section, we discuss an approach to modelling the time evolution of strategy fitnesses
with a view towards characterizing regimes. This could be used to guide our choice of in-sample
of out-of-sample periods in the existing setup. We present preliminary results in this direction. In
current work, we are trying to extend the basic algorithm in such a way that we can more directly
make use of the Sequential Monte Carlo method, such as particle filter based estimation of strategy
fitness that might parsimoniously accomplish what is done above with permutation tests.



2 The Regime Discovery and Strategy Optimization Algorithm

Definition 1. A market state is a collection of raw market time series data, that is the transactions
and order book data. We denote the market state by a symbol State. We define a strategy function
s as a (possibly partial) function s : State x Time — Answer where Answer denotes a set of
all possible trading decisions'. We denote the set of all strategy functions by St Func. We call any
function f : StFunc x State x Time — R a fitness function.

In the following, we assume the existence of a fixed fitness function fitness. There can be a lot
of strategies applicable in a given regime. We define a function returning a probability distribution
for choosing a particular strategy function depending on the regime, where better-behaving strat-
egy functions are chosen with higher probability than others. In the trading phase, this probability
distribution is interpreted as an allocation of capital to the trading strategies.

Definition 2. A regime r € R is a set of strategies which act similarly under the same market state.
We define a function stFuncDist : R — (StFunc — [0;1]) assigning to a regime a probability
distribution on strategy functions where the probability denotes a probability of choosing a strategy
function when the market is operating under that regime.

Initialisation:
1. Choose a nonempty set 1" uniformly at random from the set T7me.
2. Regime classification tests strategies’ fitnesses in different time periods and looks for those

which behave similarly. As the measure of similarity we use sample variance.

For each candidate strategy function set CS € p(StFunc), CS # () where p denotes a pow-
erset, we perform a permutation test for any ¢ € 7" where the test statistic is a sample standard
deviation of fitnesses of strategies in C'S against those in StF'unc \ C'S. We denote the average
p-value [2] obtained for the set C'S over times ¢ as P(C'S). Obviously, we can randomize this
step to reduce the amount of computation needed.

For a given statistical significance «, we define the set of “reasonable” strategies RS as:
RS = JCS where C'S € p(StFunc) and P(CS) < a,

and a set of “reasonable” regimes RR = {rcg|CS € p(StFunc), P(CS) < a} CR.

3. Let X; = maxscRgs fitness(s, state,t) and N; = mingegs fitness(s, state, t). Now for each
rcs € RR we define stFuncDist'”) and classifyMarket(O) as:

A ifseCS
stFuncDist®) (reg)(s) = § 15 s _
0 otherwise

1 Z stFuncDist®) (ros)(s) x (fitness(s, state, t) — Ny)

; (0) - —
classifyMarket"™ (state, t)(rcs) K 2 X, N,

(D

where K is a normalization constant required to produce a probability distribution.
Before introducing an iterative step, we define several auxiliary functions:

Definition 3. Let r € R denote a regime, s € StFunc a strategy function, state € State a market
state, t € T'ime a point in time, T' C Time, and ¢ € N any natural number. We define the following:

weight(i)(s,state,t) = Z classifyMarket(i)(smt&t)(r) x stFuncDist® (r)(s),
reRR
sz'tness(i)(s,state,t) = weight(i)(S,state,t) X fitness(s, state, t),
succ(T) = avg, <ZSERS wFitness'" (s, state, t)) - Nt.
€T X,

! To implement a strategy in code, one may use state variables, such as current market positon, or the value
of a moving average. This is hidden with the functional definition of a strategy.

)



4000 2000

1500
1000
500

3000

2000

1000
-500

-1000

Figure 1: (Left) Out-of-sample profit (middle line) versus possible min (bottom line) and max profit
(top line) over all strategies for the period 2006-11-01 to 2008-08-28. (Right) Out-of-sample profit
for different in-sample and out-of-sample periods.

Next we present the iterative step used for adjusting the classifyMarket and stFuncDist functions.
For 0 < e < %, we define two thresholds A = J + ¢ and B = 1 — &, which determine conditions
for successful and unsuccessful termination of the loop respectively.

Iterative step (i-th step, ¢ € N):

1. Set classifyMarket(i) = classifyMarket(i_l) and stFuncDist®”) = stPuncDist"™Y, and
choose a nonempty set T C Time uniformly at random.

2. Let overall success OS) = succ™(TW). If 0S) > A, the overall fitness achieved by the
strategy functions weighted by the function wez’ght(z), we terminate.

3. We adjust stPuncDist") for each regime r by raising (lowering) a probability of choosing a
strategy s proportionally to the following term:

factor(s) = avg,cre (wFitness(i)(s, state,t) — avgy cpg wFitnessV (s, state, t))

4. If OS < B, then classifyMarket(i) is performing badly and is either adjusted according to Eq.
(1) and the current state of stFuncDist™ or the algorithm is restarted.

This algorithm has been implemented. The results are very encouraging and we present some re-
sults that are indicative of the algorithm’s potential®>. Figure 1 shows that the algorithm effectively
achieves a good approximation to the maximum profit in an example where the worst strategies in
each period did very badly. How close the achieved value is to the maximum line, is controlled by
the threshold A, which was 0.65 in this experiment. These results span both a diverse set of market
conditions including large parts of the market turmoil of 2008.

The right part of the figure shows that the performance of the trading phase of the algorithm de-
pends crucially on the length of in-sample period and out-of-sample period. It is this issue, “regime
persistence” that we address in the next section.

3 Modelling Time Evolution of Strategy Fitness to Characterize Regimes

As already indicated, we model regimes in terms of the relative suitability of different strategies
from our user-defined portfolio. With a diverse portfolio, we expect that there will typically be at
least one member well-suited to the current regime. We directly model this suitability, instead of
indirectly modelling, say, a price process and selecting strategies according to that.

2 The data used was 5 minutes bars for the Nasdaq100 E-mini futures contract, which trades on CME. The
training phase was from 2004-11-01 to 2006-10-31. The trading phase was from 2006-11-01 to 2008-08-28.
No learning was used during the trading phase. All time periods were 5 days long. Slippage of two ticks
(0.5 points) per round turn was applied to all trades. Two qualitative strategies (see Section 3) were used, a
contrarian and breakout strategy. Both were based on the relative strength index (RSI), and used a lookback for
the RSI and a single threshold; 21 parameterizations were considered for each qualitative strategy. The fitness
function used was profit x log(#trades) x R?. We set e = 0.15, so that the threshold for success was
A = 0.65.



zoe| - '
Fos-" i . s ]

gal e . “ ‘ ‘ 1
ot T T T -

T o 0 o5 o5 1 13 15 S T TR
100 200 300 400 500 Shategy 1 TTiiEanbsaas

u‘“w' ot

f
T

Figure 2: (Left) Distribution of qualitative fitnesses between two strategies, the first a breakout
strategy and the other a contrarian strategy. (Center) Normalized version of the same data. (Right)
Projection of the data onto the two eigenvectors, after normalizing both fitnesses to have zero mean.

We call a set of strategy functions whose algorithmic description is identical up to a fixed set of pa-
rameters, a qualitative strategy ¥.. We denote the maximum fitness attained by any parametrization
of strategies in X by qual Flitness(X,t) = maxsey fitness(s, state, t). This allows us to model
the suitability of elements of a portfolio in a number of different ways. Here, we briefly outline the
type of structure that emerges from this construction.

Consider two qualitative strategies, 31 and 35 whose qualitative fitnesses at time ¢ are denoted ¢ (¢)
and ¢o(t) respectively. Figure 2 depicts a possible distribution of qualitative fitnesses (resulting from
the same experiment from the previous section). This data can be analyzed using standard tools to
draw some useful inferences. Firstly, this data admits clustering (we used Weka and an Expectation-
Maximization clustering algorithm) into three regimes - two of which show strategy 2 to dominate
strategy 1 while in one strategy 1 mildly outperforms strategy 2. Secondly, as seen in Figure 2 which
depicts projections onto the two eigenvectors, the assignment of the dominant strategy is not through
an entirely random process and there is persistent structure (e.g., periods of positive/negative values
in the projection onto the second eigenvector). This corresponds to our desired regimes. Similarly,
movement along the first eigenvector indicated fitness - which is also structured over time.

In general, the tradeoff is across an entire portfolio involving N qualitative strategies, >; where
i =1,..., N, and a (default) strategy, cash, that signifies temporarily holding back some capital.
Then one could normalize the qualitative fitness values relative to cash, so that at any instant in
time the fitnesses can be viewed as a point on an (/N + 1)-simplex. Regimes in this general model
correspond to possibly overlapping subsets of the simplex so that the market process induces a
symbolic dynamics over the simplex.

The algorithm described in the previous section approximates this dynamics by performing permu-
tation tests over a (grid-like) collection of parameterized strategies. An alternative would be to use
a continuous model for the distributions defining the dynamics on the simplex and use that to adjust
weight in Definition 3. One way to achieve this would be to define a multi-level state estimation and
prediction procedure over the simplex (such as with particle filters). We are currently exploring this
direction and expect to report results in the final version of this paper.

Acknowledgements
‘We thank John Fenlon for fruitful discussions.

References
[1] G. Creamer and Y. Freund (2006), Automated trading with boosting and expert weighting. Available at
SSRN: http://ssrn.com/abstract=937847
[2] P. 1. Good (2005), Permutation, Parametric and Bootstrap Tests of Hypotheses, Springer.
[3] A.Doucet, N. de Freitas, N. Gordon, Eds. (2001), Sequential Monte Carlo Methods in Practice, Springer.

[4] A. Lo, H. Mamaysky, and J.Wang (2000), Foundations of technical analysis: Computational algorithms,
statistical inference, and empirical implementation. J. Finance 4, 1705-1765.



	Introduction
	The Regime Discovery and Strategy Optimization Algorithm
	Modelling Time Evolution of Strategy Fitness to Characterize Regimes

